Existence of solutions to boundary value problem of fourth-order with functional boundary conditions at resonance

Fei Yang ${ }^{1, \mathrm{a}}$, Yuanjian Lin ${ }^{\text {2, }}$ b
${ }^{1}$ Nanchang Institute of Science and Technology, Nanchang 330108, Jiangxi
${ }^{2}$ Nanchang Institute of Science and Technology, Nanchang 330108, Jiangxi
a eixu126@126.com, ${ }^{\text {b }}$ linyuanzhou@126.com

Keywords: Functional boundary condition; fourth-order; resonance; Boundary value problem.

Abstract: We study the existence of solutions for a fourth-order functional boundary value problem at resonance $\left\{\begin{array}{c}u^{(4)}(t)=f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t),\right), t \in(0,1) \\ \varphi_{1}(u)=\varphi_{2}(u)=\varphi_{3}(u)=\varphi_{4}(u)=0\end{array}\right.$ where $\varphi_{i}: C^{3}[0,1] \rightarrow R, i=1,2,3$. By using the coincidence degree theory due to Mawhin and constructing suitable operators.

1. Introduction and introduction

A boundary value problem is said to be at resonance if the corresponding homogeneous boundary value problem has a non-trivial solution. Boundary value problems at resonance have been studied bymany authors. .We refer the readers to [1-9] and the references cited therein. In [10], the authors discussed the second-order differential equation $x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right), t \in(0,1)$ with functional boundary conditions $\Gamma_{1}(x)=0, \Gamma_{2}(x)=0$, where Γ_{1}, Γ_{2} are linear functional on $C^{1}[0,1]$ satisfying the general resonance condition $\Gamma_{1}(x) \Gamma_{2}(1)=\Gamma_{1}(1) \Gamma_{2}(x)$.

In [11] proved the existence of solutions for third-order functional boundary value problems (FBVPs) at resonance

$$
\left\{\begin{array}{c}
x^{\prime \prime \prime}(t)=f\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t)\right), 0<t<1 \\
\varphi_{1}(x)=\varphi_{2}(x)=\varphi_{3}(x)=0,
\end{array}\right.
$$

where $\varphi_{i}: C^{3}[0,1] \rightarrow R, i=1,2,3,4$ are bounded linear functionals. In this paper, the existence of solutions to the following boundary value problems is studied by using the coincidence degree extension theorem

$$
\left\{\begin{array}{c}
u^{(4)}(t)=f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t),\right), t \in(0,1) \tag{1}\\
\varphi_{1}(u)=\varphi_{2}(u)=\varphi_{3}(u)=\varphi_{4}(u)=0
\end{array}\right.
$$

where $\varphi_{i}: C^{3}[0,1] \rightarrow R, i=1,2,3, \varphi_{i}\left(t^{j}\right)=0, i=1,2,3,4, j \in\{1,2,3,4\}$.

2. Preliminaries

For convenience, we denote

$$
\Delta=\left|\begin{array}{llll}
\varphi_{1}\left(t^{3}\right) & \varphi_{1}\left(t^{2}\right) & \varphi_{1}(t) & \varphi_{1}(1) \\
\varphi_{2}\left(t^{3}\right) & \varphi_{2}\left(t^{2}\right) & \varphi_{2}(t) & \varphi_{2}(1) \\
\varphi_{3}\left(t^{3}\right) & \varphi_{3}\left(t^{2}\right) & \varphi_{3}(t) & \varphi_{3}(1) \\
\varphi_{4}\left(t^{3}\right) & \varphi_{4}\left(t^{2}\right) & \varphi_{4}(t) & \varphi_{4}(1)
\end{array}\right|,
$$

$$
\begin{aligned}
& \Delta_{1}(v)=\left|\begin{array}{llll}
\varphi_{1}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{1}\left(t^{2}\right) & \varphi_{1}(t) & \varphi_{1}(1) \\
\varphi_{2}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{2}\left(t^{2}\right) & \varphi_{2}(t) & \varphi_{2}(1) \\
\varphi_{3}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{3}\left(t^{2}\right) & \varphi_{3}(t) & \varphi_{3}(1) \\
\varphi_{4}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{4}\left(t^{2}\right) & \varphi_{4}(t) & \varphi_{4}(1)
\end{array}\right|, \\
& \Delta_{2}(v)=\left|\begin{array}{llll}
\varphi_{1}\left(t^{3}\right) & \varphi_{1}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{1}(t) & \varphi_{1}(1) \\
\varphi_{2}\left(t^{3}\right) & \varphi_{2}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{2}(t) & \varphi_{2}(1) \\
\varphi_{3}\left(t^{3}\right) & \varphi_{3}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{3}(t) & \varphi_{3}(1) \\
\varphi_{4}\left(t^{3}\right) & \varphi_{4}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{4}(t) & \varphi_{4}(1)
\end{array}\right|, \\
& \Delta_{3}(v)=\left|\begin{array}{llll}
\varphi_{1}\left(t^{3}\right) & \varphi_{1}\left(t^{2}\right) & \varphi_{1}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{1}(1) \\
\varphi_{2}\left(t^{3}\right) & \varphi_{2}\left(t^{2}\right) & \varphi_{2}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{2}(1) \\
\varphi_{3}\left(t^{3}\right) & \varphi_{3}\left(t^{2}\right) & \varphi_{3}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{3}(1) \\
\varphi_{4}\left(t^{3}\right) & \varphi_{4}\left(t^{2}\right) & \varphi_{4}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) & \varphi_{4}(1)
\end{array}\right|, \\
& \Delta_{4}(v)=\left|\begin{array}{llll}
\varphi_{1}\left(t^{3}\right) & \varphi_{1}\left(t^{2}\right) & \varphi_{1}(t) & \varphi_{1}\left(\int_{0}^{t}(t-s)^{3} v(s) d s 1\right) \\
\varphi_{2}\left(t^{3}\right) & \varphi_{2}\left(t^{2}\right) & \varphi_{2}(t) & \varphi_{2}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) \\
\varphi_{3}\left(t^{3}\right) & \varphi_{3}\left(t^{2}\right) & \varphi_{3}(t) & \varphi_{3}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right) \\
\varphi_{4}\left(t^{3}\right) & \varphi_{4}\left(t^{2}\right) & \varphi_{4}(t) & \varphi_{4}\left(\int_{0}^{t}(t-s)^{3} v(s) d s\right)
\end{array}\right|,
\end{aligned}
$$

From the last three determinants we can define and derive the following three relations:

$$
\begin{align*}
& \Delta_{1}(L u)=\left|\begin{array}{llll}
\varphi_{1}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{1}\left(t^{2}\right) & \varphi_{1}(t) & \varphi_{1}(1) \\
\varphi_{2}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{2}\left(t^{2}\right) & \varphi_{2}(t) & \varphi_{2}(1) \\
\varphi_{3}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{3}\left(t^{2}\right) & \varphi_{3}(t) & \varphi_{3}(1) \\
\varphi_{4}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{4}\left(t^{2}\right) & \varphi_{4}(t) & \varphi_{4}(1)
\end{array}\right|=-u^{\prime \prime \prime}(0) \Delta \tag{2}\\
& \Delta_{2}(L u)=\left|\begin{array}{llll}
\varphi_{1}\left(t^{3}\right) & \varphi_{1}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{1}(t) & \varphi_{1}(1) \\
\varphi_{2}\left(t^{3}\right) & \varphi_{2}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{2}(t) & \varphi_{2}(1) \\
\varphi_{3}\left(t^{3}\right) & \varphi_{3}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{3}(t) & \varphi_{3}(1) \\
\varphi_{4}\left(t^{3}\right) & \varphi_{4}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{4}(t) & \varphi_{4}(1)
\end{array}\right|=-3 u^{\prime \prime}(0) \Delta \tag{3}\\
& \Delta_{3}(L u)=\left|\begin{array}{llll}
\varphi_{1}\left(t^{3}\right) & \varphi_{1}\left(t^{2}\right) & \varphi_{1}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{1}(1) \\
\varphi_{2}\left(t^{3}\right) & \varphi_{2}\left(t^{2}\right) & \varphi_{2}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{2}(1) \\
\varphi_{3}\left(t^{3}\right) & \varphi_{3}\left(t^{2}\right) & \varphi_{3}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{3}(1) \\
\varphi_{4}\left(t^{3}\right) & \varphi_{4}\left(t^{2}\right) & \varphi_{4}\left(-u^{\prime \prime \prime}(0) t^{3}-2 u^{\prime \prime}(0) t^{2}-2 u^{\prime}(0) t-2 u(0)\right) & \varphi_{4}(1)
\end{array}\right|=-6 u^{\prime}(0) \Delta \tag{4}
\end{align*}
$$

and $\Delta_{4}(L u)=-6 u(0) \Delta$. Also, $\Delta_{i j}, i, j=1,2,3,4, \Delta_{k}(v)_{i j}, i, k=1,2,3,4, j=\{1,2,3,4\} \backslash\{k\}$, are the cofactors of $\varphi_{i}\left(t^{4-j}\right)$ in $\Delta, \Delta_{k}(v), k=1,2,3,4$ respectively.
Mawhin's continuation theorem:
Let X, Y be the Banach space, $L: \operatorname{dom} L \subset X \rightarrow Y$ be the Linear mapping, $N: X \rightarrow Y$ be the Nonlinear continuous mapping, Let $\operatorname{dim} \operatorname{ker} L=\operatorname{dim}(Y / \operatorname{Im} L)<+\infty$, and $\operatorname{Im} L$ is a Closed set in Y, according to L is a Fredholm operator whose index is zero. If L is a Fredholm operator whose index is zero, then there is a continuous projection operator $P: X \rightarrow \operatorname{KerL}$ and $Q: Y \rightarrow Y_{1}$, such that $\operatorname{Im} P=K$ er L, K er $Q=\operatorname{Im} L, X=\operatorname{Ker} L \oplus \operatorname{Ker} P, Y=\operatorname{Im} L \oplus \operatorname{Im} Q \cdot L_{P}:=\left.L\right|_{\text {domLnX }}$ is invertible, so let's call that the inverse K.If $Q N(\bar{\Omega})$ is bounded, and $K(I-Q) N: \bar{\Omega} \rightarrow X$ is relatively tight in X, according to N is $L-$ tight in $\bar{\Omega}$, where Ω is any bounded open set in X.

Theorem 2.1: (Mawhin coincidence degree theory ${ }^{[10]}$) Let X, Y be the Banach space, L is a Fredholm operator whose index is zero, $N: \bar{\Omega} \rightarrow Y$ is $L-\operatorname{tight}$ in $\bar{\Omega}$.If
(1) $L x \neq \lambda N x, \forall(x, \lambda) \in(d o m L \cap \partial \Omega) \times(0,1)$;
(2) $N x \notin \operatorname{Im} L, \forall x \in \operatorname{Ker} L \cap \partial \Omega$;
(3) $\operatorname{deg}(J Q N, \Omega \cap \operatorname{Ker} L, 0) \neq 0$, there $J: \operatorname{Im} Q \rightarrow K e r L$ is a linear isomorphism; equation
$L x=N x$ has at least one solution in $d o m L \cap \bar{\Omega}$.
We work in $U=C^{3}[0,1]$ with the norm $\|u\|=\max \left\{\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty},\left\|u^{\prime \prime}\right\|_{\infty},\left\|u^{\prime \prime \prime}\right\|_{\infty}\right\}$, where
$\|u\|_{\infty}=\max _{t \in[0,1]}|u(t)|$.we define $V=L^{1}[0,1]$ with the norm $\|v\|_{1}=\int_{0}^{1} v(t) d t$.
In this paper, we always suppose that the following condition holds:
(C) There exist constants $k_{i}>0, i=1,2,3,4$, such that $\left|\varphi_{i}(u)\right| \leq k_{i}\|u\|, u \in U$ and the function $f(t, x, y, z, w)$ satisfies the Carath'eodory conditions, that is, $f(\cdot, x, y, z, w)$ is measurable for each fixed $(x, y, z, w) \in R^{4}, f(t, \cdot, \cdot, \cdot)$ is continuous for a.e. $t \in[0,1]$.

3. The main results

In this case, we assume that there exists $j \in\{1,2,3,4\}$ such that $\Delta_{j 4} \neq 0$.In what follows, we choose and fix such j.

Lemma 3.1 ${ }^{[12]}$ There exists a function $g_{4} \in V$ such that $\Delta_{4}\left(g_{4}\right)=1$.
Lemma 3.2 ${ }^{[12]} \operatorname{Im} L=\left\{v \in V: \Delta_{4}(v)=0\right\}$.
Lemma 3.3 $K_{P 4}=\left(\left.L\right|_{\text {domL } \cap \text { Ker } P_{4}}\right)^{-1}$.
We introduce the constants $l_{3}=k_{1}\left|\Delta_{14}\right|+k_{2}\left|\Delta_{24}\right|+k_{3}\left|\Delta_{34}\right|+k_{4}\left|\Delta_{44}\right|$ and

$$
\begin{equation*}
l=\max \left\{k_{1} k_{2}, k_{1} k_{3}, k_{1} k_{4}, k_{2} k_{3}, k_{2} k_{4}, k_{3} k_{4}\right\} . \tag{5}
\end{equation*}
$$

The next assumption is fulfilled in the main results by virtue of appropriate assumptions on $f(t, \cdot, \cdot, \cdot$,$) :$
$\left(\mathrm{H}_{1}\right)$ For any $r>0$, there exists a function $h_{r} \in V$ such that $\left|f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right)\right| \leq h_{r}(t)$, $u \in U,\|u\| \leq r$.
Lemma 3.4 There exists a function $g_{4} \in V$ such that $\Delta_{4}\left(g_{4}\right)=1$.
If (H_{1}) holds and $\Omega \subset U$ is bounded, then N is L-compact on $\bar{\Omega}$.
In order to obtain the main results, we impose the following conditions:
$\left(\mathrm{H}_{2}\right)$ There exist nonnegative functions $a, b, c, d, e \in V$ such that

$$
|f(t, x, y, z, w)| \leq a(t)+b(t)|x|+c(t)|y|+d(t)|z|+e(t)|w|, t \in[0,1], a, b, c, d, e \in R ;
$$

$\left(\mathrm{H}_{3}\right)$ There exists a constant $M_{04}>0$ such that $\Delta_{4}(N u) \neq 0$ if $|u(t)|>M_{04}, t \in[0,1]$;
$\left(\mathrm{H}_{4}\right)$ There exists a constant $M_{14}>0$ such that if $|c|>M_{14}$, then one of the following two inequalities holds:

$$
\begin{align*}
& c \Delta_{4}(N c)>0 \tag{6}\\
& \text { or } c \Delta_{4}(N c)<0 \tag{7}
\end{align*}
$$

(here $N c=f(t, c, 0,0,0), c \in R$)
Lemma 3.5 ${ }^{[12]}$ Assume that $\left(\mathrm{H}_{2}\right)\left(\mathrm{H}_{3}\right)$ hold and let

$$
\begin{equation*}
A_{P 4}\left(\|b\|_{1}+\|c\|_{1}+\|d\|_{1}+\|e\|_{1}\right)<\frac{1}{2} . \tag{8}
\end{equation*}
$$

where $A_{P 4}=1+\frac{8 l}{\left|\Delta_{j 4}\right|}$. Then $\Omega_{14}=\{u \in \operatorname{dom} L \backslash \operatorname{KerL} L: L u=\lambda N u, \lambda \in(0,1)\}$ is bounded.
Lemma 3.6 ${ }^{[12]}$ Assume that $\left(\mathrm{H}_{4}\right)$ holds. Then $\Omega_{24}=\{u \in \operatorname{KerL}: N u \in \operatorname{Im} L\}$ is bounded.
$\begin{array}{llllll}\text { Lemma } & 3.7 & \text { Assume that } & \left(\mathrm{H}_{4}\right) & \text { holds. } & \text { Then }\end{array}$ $\Omega_{44}=\left\{U: \rho \lambda U+(1-\lambda) \Delta_{4}(N u)=0, u \in \operatorname{Ker} L, \lambda \in[0,1]\right\}$ is bounded, where $\rho=\left\{\begin{array}{c}1, \text { if }(6) \text { holds } \\ -1, \text { if }(7) \text { holds }\end{array}\right.$.

Theorem 3.1: Assume that $\left(\mathrm{H}_{2}\right)-\left(\mathrm{H}_{4}\right)$ and (8) hold. Then problem (1) has at least one solution.
Proof Let $\Omega \supset \bar{\Omega}_{14} \cup \bar{\Omega}_{24} \cup \bar{\Omega}_{34} \cup \bar{\Omega}_{44}$ be bounded. It follows Lemmas3.5 and Lemmas3.6 that
$L u \neq \lambda N u, u \in(d o m L \backslash \operatorname{Ker} L) \cap \partial \Omega, \lambda \in(0,1)$, and $N u \notin \operatorname{Im} L, u \in \operatorname{Ker} L \cap \partial \Omega$. Let $H(u, \lambda)=\lambda \rho u+(1-\lambda) J_{4} Q_{4} N u$,
where $J_{4}: \operatorname{Im} Q_{4} \rightarrow K e r L$ is an isomorphism defined by $J_{4}\left(c g_{4}\right)=c, c \in R$. By Lemma3.7, we know
$H(u, \lambda) \neq 0, u \in \partial \Omega \cap \operatorname{KerL} L, \lambda \in[0,1]$. Since the degree is invariant under a homotopy,

$$
\begin{aligned}
\operatorname{deg}\left(\left.J_{4} Q_{4} N\right|_{\text {KerL }}, \Omega \bigcap \operatorname{KerL}, 0,0\right) & =\operatorname{deg}(H(\cdot, 0), \Omega \bigcap \operatorname{Ker} L, 0,0) \\
& =\operatorname{deg}(H(\cdot, 1), \Omega \cap \operatorname{Ker} L, 0,0) \\
& =\operatorname{deg}(\rho I, \Omega \cap \operatorname{Ker} L, 0,0) \neq 0 .
\end{aligned}
$$

By Theorem2.1, $L u=N u$ has a solution in $\operatorname{domL} \cap \bar{\Omega}$.

4. Conclusion

In this paper, the existence of at least one solutions to boundary value problem of resonance fourth-order with functional boundary; By means of Machin's continuation theorem, the existence of solution is verified.

Acknowledgements

This work is supported by Department of education science and technology research youth project in 2017(Item no.GJJ171107).

References

[1] Du, Z, Lin, X, Ge, W: A note on a third-order multi-point boundary value problem at resonance. J. Math. Anal. Appl. 2005, 302: 217-229.
[2] Chang, SK, Pei, M: Solvability for some higher order multi-point boundary value problems at
resonance. Results Math. 2013, 63:763-777.
[3] Cui, Y: Solvability of second-order boundary-value problems at resonance involving integral conditions. Electron.J. Differ. Equ. 201245.
[4] Jiang, W: Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Anal., Real World Appl. 2012, 13:2285-2292.
[5] Jiang, W: Solvability of fractional differential equations with p-Laplacian at resonance. Appl. Math. Comput.2015, 260:48-56.
[6] Kosmatov, N, Jiang, W: Second-order functional problems with a resonance of dimension one. Differ. Equ. Appl. 2016, 3:349-365.
[7] Lin, X, Du, Z, Meng, F: A note on a third-order multi-point boundary value problem at resonance. Math. Nachr. 2011, 284:1690-1700.
[8] Phung, PD, Truong, LX: On the existence of a three point boundary value problem at resonance in Rn. J. Math. Anal.Appl. 2014, 416:522-533.
[9] Zhang, X, Feng, M, Ge, W: Existence result of second-order differential equations with integral boundary conditions atresonance. J. Math. Anal. Appl. 2009, 353:311-319.
[10] Zhao, Z, Liang, J: Existence of solutions to functional boundary value problem of second-order nonlinear differential equation. J. Math. Anal. Appl. 2011, 373:614-634.
[11] Mawhin, J: Topological Degree Methods in Nonlinear Boundary Value Problems. NSF-CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (1979).
[12] Weihua Jiang, Nickolai Kostmatov, Solvability of a third-order differential equation with functional boundary conditions at resonance. J.Boundary Value Problems.2017, 2017:1-20.

